テクニカルジャーナル|研究・開発|アルバック

テクニカルジャーナル

Technical Journalは、技術開発型企業アルバックならではの技術者独自のレポートを紹介しているアルバックグループの技術情報誌です。
購読いただくにはお客様登録(無料)が必要となります。お客様情報をご入力・送信後、ダウンロードいただけます。

technical-journal_no83

No.84
April/2021

  • 半導体多層配線における成膜技術
    ダウンロード
    先進技術研究所 髙澤悟他

    We have developed pretreatment technology, Cu sputter deposition technology, and CVD-Co deposition technology for semiconductor multilayer wiring technology. The New remote plasma Process of the pretreatment technology suppressed the damage to the Low-k film, and the uniformity in the wafer surface and the stability of the continuous treatment were obtained. The New CVD-Co Process realized a uniform film formation with a film thickness of 1.5 nm and obtained good coverage performance in a fine pattern. In the future, these wiring formation technologies are expected to be applied to Logic and Memory Devices.

  • 相変化メモリ向け成膜技術とプロセスの開発
    ダウンロード
    先進技術研究所 増田健他

    Phase change random access memory( PCRAM) is a type of non-volatile memory that is embedded in semiconductor devices and has been put to practical use as storage class memory (SCM) with high speed and large capacity at a lower cost than DRAM. It is also expected to be applied to neural computing, which mimics the neural circuits of the human brain. In order to realize PCRAM, it is essential to develop film deposition technologies and processes to realize appropriate film properties and mass productivity for the memory elements, selector elements, and electrode materials( carbon is widely used). In this paper, we will explain the status of technology development for depositing each of these elements, and also present the evaluation results of a prototype AI device using CVD technology for application in neural computing.

  • 光学膜成膜装置ULDiS-1500PHLの開発
    ダウンロード
    先進技術研究所 荒谷卓磨他

    Optical films can select transmittance and reflectance at certain wavelength by combination of thin films with different refractive index. And it have long been used as anti-reflection (AR) film, specific wavelength transmission filter, and so on. In past, optical films are deposited on certain substrate and assembled with electronic devices. However, recently case of assembling with optical films on wafer and electronic devices before dicing is increasing along the miniaturization of electronic devices. So deposition system for optical film is required to meet wafer process and particle control with semiconductor level. We developed sputtering system "ULDiS-1500PHL" for wafer, and report system and process especially for infrared band pass filter.

  • 次世代デバイス向け高移動度酸化物半導体材料の開発
    ダウンロード
    先進技術研究所 半那拓他

    Transparent Amorphous Oxide Semiconductor( TAOS) typified by amorphous IGZO( In-Ga-Zn-O) is promising materials for next-generation electronics devices. It can provide homogeneous and large area thin film inexpensively by sputtering equipment for mass production. The special properties of TAOS based devices such as amorphous structure, high mobility and low leak current may have potential to replace conventional Si based technology. Development of new TAOS material which has high mobility and high reliability is essential for the popularization of oxide based technology. In this paper we developed "Target H" as a high mobility oxide semiconductor sputtering target. The thin film deposited by DC (Direct Current) magnetron sputtering shows high Hall mobility above 25 cm2/Vs and amorphous structure regardless of partial pressure of oxygen during film deposition. The BCE-type TFT (Thin Film Transistor) by using Target H and IGZO were demonstrated. The estimated mobility of H was 34.8 cm2/Vs, which is 3 times larger than that of IGZO.

  • GaNパワーデバイス向け低ダメージドライエッチング技術
    ダウンロード
    先進技術研究所 山田真嗣・中村敏幸他

    In this report, low-damage dry etching technologies for Gallium nitride( GaN) power devices are presented using inductively coupled plasma reactive ion etching( ICP-RIE) equipment with the newlydeveloped high-frequency RF power supply. GaN vertical trench-gate metal-oxide-semiconductor field-effect transistors( MOSFETs) are promising devices for realizing high-breakdown voltage and low on-resistance. However, generally, when the trench-gate structure is fabricated by ICP-RIE, these properties degrade due to the plasma-induced damage which is formed near GaN surface. Our RF power supply contributes to the reduction of the damage by outputting accurately-controlled and ultimately-low bias power. This report introduces the overview of the RF power supply and the recent achievements using it.

このサイトでは、お客様の利便性や利用状況の把握などのためにCookieを使用してアクセスデータを取得・利用しています。Cookieの使用に同意する場合は、
「同意しました」をクリックしてください。「個人情報保護方針」「Cookie Policy」をご確認ください。

同意しました