腐食性ガスを用いる真空装置用表面処理 「VACAL[®]-Z」の開発

石榑文昭*1・稲吉さかえ*1・山本良明*2・佐藤洋志*3

Development of Surface Treatment VACAL[®]-Z for Vacuum Equipment Using Corrosive Gases

Fumiaki ISHIGURE^{*1}, Sakae INAYOSHI^{*1}, Yoshiaki YAMAMOTO^{*2} and Hiroshi SATO^{*3}

*¹Institute of Advanced Technology, ULVAC, Inc., 2500 Hagisono, Chigasaki, Kanagawa 253-8543, Japan
*²FPD Division, ULVAC, Inc., 2500 Hagisono, Chigasaki, Kanagawa 253-8543, Japan
*³ULVAC TECHNO, Inc., 2658-19 Hagisono, Chigasaki, Kanagawa 253-0071, Japan

We have developed a method of micro arc oxidation treatment (VACAL[®]-Z) as a surface treatment of aluminum alloy used for vacuum equipment using corrosive gas, such as CVD equipment. The oxide layer formed by VACAL[®]-Z had a three layer structure of crystalline γ -alumina. In addition, we have devised and made possible a step processing for VACAL[®]-Z treatment of the entire surface of large objects, such as vacuum production equipment for Flat Panel Displays.

1.) はじめに

腐食性ガスを使用するChemical Vapor Deposition (CVD) 装置やエッチング装置の真空装置内壁や内 部部品は、各種腐食性ガスに対する耐食処理が必要で ある。耐食処理の目的は、部材の耐久性を高くしメン テナンス期間を延ばすことや、腐食性ガスから材料を 守りパーティクルの発生を低減させることである。近 年ディスプレイや半導体等の高性能化に伴い、配線の 微細化が進んでいるためパーティクルを低減すること の重要性が高まっている。CVD装置やエッチング装 置では、主にアルミニウム合金が使用されている。従 来からアルミニウム合金の耐食処理としてポーラス型 アノード酸化処理(アルマイト処理)が広く使用され ている。しかし、アルマイト処理は表面積が大きくな ること、封孔処理を行うと水和物が形成されガス放出 量が多くなる¹⁾という欠点が知られている。さらに, 高温になる部分で使用すると母材とアルマイトの線膨 張係数の違いによりクラックが発生し、

耐食性の低下 やパーティクルの発生原因になる問題がある。我々は, Micro Arc Oxidation (MAO) 処理を用いてこの問題 を解決した^{2,3)}。MAO処理の処理系概略図をFig.1,

- *1 (株)アルバック 先進技術研究所
- (〒253-8543 神奈川県茅ヶ崎市萩園2500)
 ^{*2}(株)アルバック FPD事業部
- (〒253-8543 神奈川県茅ケ崎市萩園2500) *3 アルバックテクノ(株)
 - (〒253-0071 神奈川県茅ヶ崎市萩園2658-19)

MAO処理中の様子をFig.2に示す。MAO処理は、電 解液中で絶縁破壊を起こしながら溶解、凝固を繰り返 し酸化皮膜が成長する、という特徴がある。また、 MAO処理は高電力で電解を行うため結晶性酸化皮膜 が成長することが知られており高い耐食性が期待でき る一方、電解液にはNa、K等アルカリ金属塩や燐酸塩 系の薬品を使用するため、これら成分が酸化皮膜中に 混入することが考えられる。アルカリ金属や燐等は真 空装置内で使用する際、成膜する薄膜に悪影響を及ぼ すため装置内に入れることはできない。我々が開発し たMAO処理「VACAL[®]-Z」は、真空装置内で使用で きるようアルカリ金属塩や燐酸塩等を使用しない電解 液のMAO処理である。本報告では、VACAL[®]-Z処理

で形成した酸化皮膜の表面形態や物性,ガス放出特性 の評価結果を述べる。またフラットパネルディスプレ イ用真空製造装置は大型であるため,大型処理品を複 数回にわけて処理をすることで全体を処理する技術 (段階処理)を開発した結果を述べる。

2. VACAL[®]-Z処理酸化皮膜の特性評価

2.1 評価試料

厚さ2mmのアルミニウム合金圧延材A6061 (Si: 0.40~0.80%, Fe: 0.70%以下, Mn: 0.15%以下, Mg: 0.80~1.2%, Cr: 0.04~0.35%, Ti: 0.15%以下, Al: 残部)を40mm×40mmに切断して処理基板と した。VACAL[®]-Z処理の電解液は,純水にアルカリ金 属塩等が入っていない有機酸塩を溶解させた。試料を 陽極とし,陰極にはカーボン板を使用した。渦電流膜 厚計で形成された酸化皮膜の膜厚を測定した結果,約 15 μ mの酸化皮膜が成長していた。

2.2 酸化皮膜の形態

Fig.3-1にVACAL[®]-Z処理した試料の表面Scanning Electron Microscope (SEM) 像を示す。VACAL[®]-Z 処理した試料の表面は、凹凸があり溶岩状形態をして いた。加えて、MAO処理の特長である火花放電を伴 う電解処理であることから、数 μ mの穴が全体にあい ていた。Fig.3-2にVACAL[®]-Z処理した試料の断面SEM 像を示す。膜厚は場所によるばらつきがあり10 ~ 17 μ mであった。VACAL[®]-Z処理の酸化皮膜は3層構造 になっていた。表面側から厚さ10 μ m弱の溶岩状層、 数 μ m程度の細かいボイドのあいた厚さ数 μ mのマイ

クロポア層, 母材との界面に形成される厚さ数100 nm のバリア層であった。VACAL[®]-Z処理した酸化皮膜には, 数100 nm ~数 μ mのボイドがあるが, 表面から母材ま で達するようなボイドやクラックはなかった。

2.3 加熱冷却による酸化皮膜の変化

VACAL[®]-Z処理試料を400 $C \times 3$ hの真空加熱, 冷却 を繰り返し行い耐食性の低下の原因の1つであるクラ ックが発生するかを確認した。その結果, VACAL[®]-Z 処理試料はクラックが発生せず, Fig.3-1に示した表面 形態に変化はなかった。アルマイトは加熱を行うと, 母材とアルマイトの線膨張係数の違いによりクラック が発生することが一般的に知られている³⁾。線膨張係 数の違いによりクラックが発生する点はVACAL[®]-Z処 理でも同様である。しかし, VACAL[®]-Z処理した酸化 皮膜に加熱, 冷却によるクラックが発生しない理由は, 数100 nm ~数 μ mのボイドが酸化皮膜全体に分散し ており, 応力が緩和されるためであると考えられる。

2.4 酸化皮膜の結晶性

Fig.4にVACAL[®]-Z処理試料のX-ray Diffraction(XRD) 測定結果を示す。VACAL[®]-Z処理した酸化皮膜からは γ -Al₂O₃のピークが検出され,結晶性の酸化皮膜が成 長していた。アルマイトは非晶質な酸化皮膜であるた め,XRD測定でAl₂O₃のピークは検出されない。

2.5 酸化皮膜のガス放出特性

Fig.5-1に室温から300 ℃まで昇温する間の単位面積 当たりのガス放出量を示す。VACAL[®]-Z処理試料のガ ス放出量は、硫酸アルマイト試料のガス放出量の1/10 以下であった。Fig.5-2にVACAL[®]-Z処理試料と硫酸ア ルマイト試料の室温から300 ℃に到達するまでに放出 されるガスの各イオン電流積算値を示す。VACAL[®]-Z 処理試料から主に放出されるガス種は、水素、水、窒 素、一酸化炭素、酸素、二酸化炭素であり、最も多く

放出されるガス種は水であった。水の放出量に注目す ると、VACAL[®]-Z処理試料は硫酸アルマイト試料と比 較してイオン電流積算値が約1/10であった。この原因 は、アルマイトの様な微細な細穴がないこと、水和物 を形成していないためであると考えられる。また、 VACAL[®]-Z処理試料はアルマイト試料と比較して、全 ガス放出の中で二酸化炭素と酸素の比率が高かった。 二酸化炭素の放出が多いのは、酸化皮膜中に取り込ま れた電解質アニオンの放出のためだと考えられる。酸 素の放出が多いのは、高電圧高電流密度で電解処理を 行うため、酸素イオンが酸化皮膜中に多く取り込まれ

Fig.5-1 Outgassing amount comparison between VACAL[®]-Z and sulfuric acid Almite treatments during heating from room temperature to 300 ℃ measured by thermal desorption spectroscopy

21

2.6 酸化皮膜中の不純物測定

VACAL[®]-Z処理した酸化皮膜中不純物を確認するた めElectron Probe Micro Analyzer (EPMA) 定性分 析を行った。検出された元素は、Al, Oの他にMg, Si, Fe, Cr, Cであり母材由来の元素以外は検出されなかっ た。一般的なMAO処理では電解液成分のNa, K, P等 が、硫酸アルマイトでは電解液成分のSが酸化皮膜中 に入るが、今回開発したVACAL[®]-Z処理は有機酸塩を 電解液に使用するため、これらの元素が検出されなか ったと考えられる。

3. VACAL[®]-Z処理の大面積処理技術

3.1 大型シャワープレートへVACAL[®]-Z処理するための課題

前述のようにVACAL[®]-Z処理酸化皮膜の諸特性を示 し、CVDやエッチング装置に使用する場合、好まし い特性を持った酸化皮膜が形成されていると確認でき た。現在の真空製造装置(特に、フラットパネルディ スプレイ用真空製造装置)は大型である。しかし, VACAL[®]-Z処理は電解に高電圧が必要であるため、大 面積処理のためには大電力が必要となり、大型部品を 処理することは困難である。ここでは大型部品の中で も構造的に表面処理の難易度が高いCVD装置等で使 用されるシャワープレートへVACAL®-Z処理するため の課題を整理する。対象としているシャワープレート の概略図をFig.6に示す。課題として第一に、前述の ように大面積を一度に処理するためには電力的に困難 な点である。その為我々は、次に示す段階処理を考案 し、全面処理を可能にした。第二に、角部への酸化皮 膜の形成である。例えば、アルマイトは酸化皮膜の成 長方向が面に垂直であるため、鋭角となる部分にはク

ラックが入りやすい。 第三に,細穴内への酸化皮膜の 形成である。シャワープレートに処理する場合,φ1.0 mm以下,深さが数10 mmの穴内にも確実に酸化皮膜 を形成しないといけない。本章では,これら課題を解 決できるか検証した結果を示す。

3.2 段階処理とは…

段階処理の手順をFig.7に示す。ここで示した手順 は、全体を2回にわけて全面を処理した場合である。 はじめに全体の半分を処理するため、電解液中に半分 を浸漬させVACAL[®]-Z処理を行う。次に残り半分を処 理するため、全面を浸漬させVACAL[®]-Z処理を行う。 VACAL[®]-Z処理は処理電圧に比例した膜厚の酸化皮膜 しか成長しないため、処理電圧で決まる膜厚以上には 酸化皮膜が成長しない。つまり、酸化皮膜が形成され てない部分から優先的に電解処理されることを利用し た手法である。我々は全面均一にVACAL[®]-Z処理が可 能である手法、段階処理を考案した。

3.3 評価試料

評価試料は、Fig.6に示したCVD用シャワープレートを用意した。このシャワープレートを4回にわけて 段階処理を行い、全面を処理した。上記とは別に、形 態や成分的に問題ないか検証をするため500 mm× 1000 mm×3 mmのA6061圧延板を用意し、同様の段 階処理を行った試料を準備した。

3.4 段階処理の検証

段階処理を用いて全面を処理したCVD用シャワー プレートの外観をFig.8-1に示す。写真中に示してある 番号は、段階処理の順番であり①→②→③→④の順に 処理を行った。目視にて、電解液液面となる部分(赤 矢印部)は若干黒い筋ができていたが、全面に酸化皮 膜が形成されていた。渦電流膜厚計により酸化皮膜の 膜厚を測定した結果をFig.8-2に示す。写真中の数値は 名場所での酸化皮膜の膜厚を示しており、膜厚範囲は 13~15 μ mであった。各段階でほぼ同じ膜厚の酸化 皮膜が形成されていた。次に、1段目と黒筋ができた 境目の断面SEM像をFig.9に、EPMA定性分析にて酸 化皮膜の成分分析を行った結果をTable 1に示す。段 階処理でできる境目部分は通常部分と比較して、形態

Table 1 Component analysis of VACAL®-Z oxidation film with step processing

Detected element	Fixed value(wt.%)	
	First	Border
0	62.4	63.4
Al	36.5	34.5
Mg	0.2	1.2
Si	0.3	0.1
Fe	0.1	0.2
С	0.5	1.2

的にも成分的にも同等の酸化皮膜が形成されていた。

3.5 角部への酸化皮膜形成検証

VACAL[®]-Z処理とアルマイト処理をした角部の表面 SEM像をFig.10に示す。アルマイトは角部にひび割れが 発生していたのに対し,VACAL[®]-Z処理は酸化皮膜で 覆われていた。アルマイトは表面に対し,深さ方向へ 垂直に酸化皮膜が成長していくため角部等鋭角になる 部分はひび割れが発生しやすい。対して,VACAL[®]-Z 処理は放電によりAlの溶解,凝固を繰り返して酸化皮 膜が成長するため,角部もひび割れなく均一に酸化皮

Fig.8-2 Oxide film thickness of VACAL®-Z treated shower plate

膜を形成できると考えられる。

3.6 細穴内への酸化皮膜形成検証

シャワープレート等にある細穴はVACAL[®]-Z処理な どアノード酸化処理で酸化皮膜を形成することは難し い。その理由は、電解液が入り込みにくいことや、電 解によって発生する泡が酸化皮膜の形成を阻害するか らだと考えられる。我々は、浸漬方法を改良して細穴 内へ十分に電解液が入るようにした。細穴内の酸化皮 膜の状態を確認するため、シャワープレート表面部 (A)、細穴入り口部(B)、細穴内中心部(C)の酸化 皮膜の断面観察を行った。確認場所をFig.11-1に、断 面観察結果をFig.11-2に示す。表面部には、約15 μm の酸化皮膜が形成されていた。細穴入り口部は、角部 にひび割れは見られず表面部同等の酸化皮膜が形成さ れていた。細穴内中心部は、酸化皮膜は形成されてい たが膜厚は表面部の2/3程度であった。VACAL[®]-Z処 理は処理電圧に比例して酸化皮膜が形成され,酸化皮

膜が形成されていない,もしくは薄い部分が集中的に 処理される。そのため,電解処理がされにくいφ1.0 mm以下の細穴内でも酸化皮膜の形成を可能にしてい ると考えられる。

4. まとめ

アルミニウム合金A6061にVACAL[®]-Z処理により約 15 μ mの酸化皮膜を成長させることができた。この 皮膜の形態や物性、ガス放出特性を評価し下記の結果 を得た⁴⁾。

- 1) 形成された酸化皮膜の表面形態は、凹凸が激しく 数μmの穴があいていた。断面形態は3層構造を しており、表面側から、数μmのボイドのあいた 厚さ10 μm弱の溶岩状層、数100 nm程度の細か いボイドのあいた厚さ数μmのマイクロポア層、 母材との界面の厚さ数100 nmのバリア層であった。
- 2) VACAL[®]-Z処理により形成された酸化皮膜は, 400 ℃の真空加熱と冷却を繰り返し行ってもひび 割れは発生しなかった。
- VACAL[®]-Z処理により形成された酸化皮膜は、 γ
 -Al₂O₃が含まれた結晶性酸化皮膜であった。
- 4) VACAL[®]-Z処理により形成された酸化皮膜のガス 放出量は、硫酸アルマイトの1/10以下であり、主 な放出ガスは水であった。また、硫酸アルマイト と比較して、二酸化炭素と酸素のガス放出比率が 高かった。
- 5) VACAL[®]-Z処理により形成された酸化皮膜の成分 分析の結果, Al, Oの他主にMg, Si, Fe, Cr, Cであ り, 母材由来の元素以外は検出されなかった。

また,大型処理品や細穴のあいているシャワープレート全面にVACAL[®]-Z処理した結果,下記の結果を得た。

- 6)大型処理品を複数回にわけて処理する段階処理に より、大型処理品全面に酸化皮膜を形成すること ができた。
- 7) VACAL[®]-Z処理を用いることで, 鋭角となる角部 にもひび割れが発生しない酸化皮膜を形成できた。
- VACAL[®]-Z処理を用いることで、φ1.0 mm以下 の細穴内部に酸化皮膜を形成できた。

以上の結果より、今回開発したVACAL[®]-Z処理によ る酸化皮膜は腐食性ガスを用いるCVDやエッチングプ ロセスの表面処理として、高耐食性低ガス放出の性能 を有していると推測できる結果が得られた。また、段 階処理を用いることでフラットパネルディスプレイ用 真空製造装置のような大型処理品や、シャワープレー トのような表面処理が難しい深さのある細穴内にも酸 化皮膜を形成できる結果が得られた。このVACAL[®]-Z 処理は商品化し、当社のCVD装置で使用されている。

*VACAL[®]はアルバックテクノ(株)の日本国登録商 標第4530221号です

文献 =

- F.Ishigure, S. Inayoshi: J. Vac. Soc. Jpn., 58, 437 (2015).
- 2) S.S.Inayoshi, F.Ishigure: Shinku, 50, 205 (2007).
- F.Ishigure, S.Inayoshi: Vacuum and Surface Science, 63, 61 (2020)
- H.Sato, H.Nakamura, S.Tsukahara, Y.Ishikawa, S.Misawa, Y.Takahashi, S.Inayoshi: Shinku, 45, 438 (2002)