電子デバイス向け 誘電体エッチングモジュール

Dielectric Material Etching Module for Electronic Device Manufacturing Lines

中村敏幸*1・大竹文人*1・作石敏幸*1・森川泰宏*1

Toshiyuki NAKAMURA^{*1}, Fumito OOTAKE^{*1}, Toshiyuki SAKUISHI^{*1} and Yasuhiro MORIKAWA^{*1}

*1 Institute of Advanced Technology, Research & Development HQ, ULVAC, Inc., 1220-1 Suyama, Susono, Shizuoka 410-1231, Japan

We have developed a dielectric material etching module capable of processing wafers up to 8 inches for electronic device manufacturing lines. That is a narrow-gap capacitively coupled plasma etching module using a 400 kHz high-frequency power supply, specifically designed for etching dielectric materials with fluorocarbon-based process gases. It features excellent etching uniformity, less metal contamination, and fewer particles, with optimized components such as single-crystal silicon parts, ceramic electrostatic chuck, and an isotropic exhaust structure.

1. はじめに

半導体デバイスの製造工程で使用されるプラズマド ライエッチング装置は、 $Cl_2 \diamond BCl_3 \alpha \mathcal{E}$ の塩素系ガス を使用する導電体(金属膜)エッチング装置およびCF₄, CHF₃、 $C_4F_8 \alpha \mathcal{E}$ に代表されるフルオロカーボン系ガ スを使用する誘電体(絶縁膜)エッチング装置に大別 される。これまでに誘導結合プラズマ(Inductively Coupled Plasma, ICP)、容量結合プラズマ(Capacitively Coupled Plasma, CCP)、電子サイクロトロン共鳴プ ラズマ(Electron Cyclotron Resonance, ECR)、表面 波プラズマ(Surface Wave Plasma, SWP) など様々 なプラズマ源が開発されてきた^{1,2)}。現在は導電体エ ッチング工程では誘導結合型エッチング装置が、誘電 体エッチング工程では容量結合型エッチング装置が主 流となっている。

誘電体エッチング工程で容量結合型エッチング装置 が使用される理由は、フルオロカーボン系のガスを使 用することに由来する。フルオロカーボン系のガスは プラズマ中で解離することでエッチングに寄与する CFxを生成するが、過剰解離するとFラジカルを多く 放出しレジストや下地膜との選択比が低下する課題が ある。また、処理室の側壁にはプラズマ中で解離した カーボン系の堆積物が付着することで、レジストとの 選択比の変動やパーティクルの発生が課題となる。故 に誘導結合型エッチング装置と比較して狭い放電空間

 *1 (株)アルバック 開発本部 先進技術研究所 (〒410-1231 静岡県裾野市須山1220-1) によりガス粒子の滞在時間が短く,且つ,プラズマを 上下電極間に閉じ込める事の出来る容量結合型エッチ ング装置が好まれる³⁾。

これまで、弊社では化合物半導体や電子デバイス向け に誘導結合型エッチング装置に磁場を付与した有磁場誘 導結合型エッチング装置の「Model:NE」、「Model: NLD」を販売してきた。「Model:NE」にはISM (ICP with Static Magnetic field) プラズマ源が搭載され、

「Model:NLD」には磁気中性線放電(magnetic Neutral Loop Discharge) プラズマ源が搭載されてい る。一方,誘電体エッチング工程で主流となっている 容量結合型エッチング装置は販売していなかった。

本稿では、電子デバイス製造ライン向けに6インチ ウェーハおよび8インチウェーハを処理可能な誘電体 のエッチングに特化した容量結合型エッチングモジュ ールを開発したので紹介する。

2.)誘電体エッチング技術

半導体デバイスにおける代表的な誘電体としてシリ コン酸化膜(SiO₂)が挙げられる。反応性イオンエッ チング(Reactive Ion Etching: RIE)におけるシリコ ン酸化膜のエッチングには前述の通りフルオロカーボ ン系のガスが使用される。フルオロカーボン系のガス を用いたシリコン酸化膜のエッチングモデルにおいて, SiO₂を構成するSidFと反応してSiFxのガス分子を, OはCと反応してCOxのガス分子を形成することで気体 として排気される。

例えば、フルオロカーボン系ガスの一種であるCF4

20

 $CFx + SiO \rightarrow SiFx \uparrow + CO \uparrow$

イオンエネルギーが低い場合にはウェーハ表面への 堆積物の形成が優勢となり、エッチング形状がテーパ ー形状となったりエッチングが進まなかったりする。 そのため、一般にはバイアス電源として高いイオンエ ネルギーが得られる低周波電源が用いられる。また、 森川によるとシリコン酸化膜のエッチングに寄与する ラジカルはCF2が望ましく、過剰解離によって発生す るFラジカルはレジストや下地膜との選択比が低下す る課題をもたらすことが知られている⁴⁻⁶⁾。このこと からCF4ガスを過剰解離させないプラズマ源が好まれ る。また、処理室の側壁にはウェーハ表面同様にCと Fからなる堆積物が付着する。この堆積物は、レジス トとの選択比を変動させる要因になるとともに剥がれ 落ちてパーティクルを発生させる。これらの課題の解 決策としてウェーハ近傍のみにプラズマを閉じ込める チャンバー構造, in-situドライクリーニングやチャン バーパーツを加熱して堆積物を低減するなどの対策が 必要となる。以上のように, 誘電体エッチングモジュ ールにはフルオロカーボン系ガスの過剰解離を抑えつ つ、CとFからなる堆積物によるパーティクルに配慮 したエッチングチャンバーの搭載が望まれる。

3. エッチングモジュール概要

開発したエッチングモジュール(Fig.1)は, 1980 年代から1990年代に広く用いられた一般にナローギャ

ップ平行平板型エッチング装置と呼ばれる電極間隔の 狭い容量結合型プラズマ源を採用している。その特徴 は以下の通りである。

・上部電極の位置を可変する機構を備える。

- ・下部電極に400 kHzの低周波を印加する。
- ・10 mm程度の狭い電極間隔でプラズマを発生させウ ェーハを処理する。
- ・上部電極周辺に配したコンファインメントリングによ りプラズマを上下電極間に閉じ込める構造を備える。
- ・チャンバー内部品を交換することで6インチウェー ハおよび8インチウェーハに対応可能である。

エッチングモジュールには別置きの2式のチラーユ ニット,1式のポンプユニットおよび1式の電源ラッ クユニットが接続されている。

3.1 下部電極およびガスの排気

下部電極は、実績のある「Model:NE」の静電チャ ック電極を基礎として400 kHzの低周波の伝搬に対応 するように改良を加えたセラミック静電チャック電極 を搭載している。ウェーハを冷却する機構として裏面 He導入機構およびチラーによる冷却機構を備える。 静電チャック表面に配した溝のデザインと裏面He導 入機構により、ウェーハ面内温度の制御に優れた特性 をもつ。また、プラズマに対する耐性の高いセラミッ ク静電チャック電極を搭載することで交換・再生の頻 度を低減している。

ウェーハ外周に設置するエッジリングに石英などの 絶縁材料を使用すると、ウェーハ外周でのシースが不 均一になりエッチングレートやエッチング形状の均一 性が悪化する。ウェーハ外周でのシースを均一するこ とを目的として、エッジリングにはバイアス電圧が印 加されるシリコン材料を採用している。

ガスの排気は,均一性への影響を考慮して下部電極 下側周辺に配置した排気分散板と4ポートからなる排 気配管により等方排気を実現している。

3.2 上部電極周辺およびガス供給システム

チャンバー上部構造体は、モーター駆動で上部電極 を上下に昇降する機構を搭載している。この昇降機構 は、プロセス条件設定画面にて0.1 mm単位でプロセ ス中の高さを設定することができ、様々なプロセスへ の対応が可能である。上部電極は昇降機構を介し筐体 接地されている。

下部電極に400 kHzの低周波を印加すると対向電極 である上部電極にもウェーハ同様のバイアス電位が印 加される。上部電極に印加されるバイアスにより上部 電極に付着するCとFからなる堆積物を除去する効果

21

を有するが、上部電極に陽極酸化したアルミ母材を使 用するとプラズマ中のフッ素と反応しフッ化したアル ミニウム(AlFx)がパーティクルとして発生する。 また、Al母材に含まれるAlやMgなどが金属汚染の原 因となる。このことから上部電極の表面部材に単結晶 シリコン電極を採用した。これにより、金属汚染やパ ーティクルの発生が少ないチャンバーの状態でウェー ハを処理することが可能である。

上部電極は同心円状に無数のガス供給孔が配置され ている。8インチウェーハ対応装置は、上部電極内周 のガス供給孔と外周のガス供給孔へ個別のガスボック スからプロセスガスを導入することができる。各ガス ボックスは、それぞれ4系統のマスフローコントロー ラからなる。プロセス条件設定画面で上部電極内周と 外周に流すガスの流量を個別に設定することが可能で ある。

4. エッチング特性

実験には「Model:NE-5700」の搬送系に本エッチ ングモジュールを搭載した「Model:NE-5700 CCP」 を用いた。本装置を用いてエッチング特性およびラン ニング時の再現性やパーティクルを評価した。

4.1 6インチウェーハ対応モジュール

Ar, CF₄, CHF₃のプラズマにて熱酸化膜付きウェ ーハを処理したエッチング結果をFig.2に示す。プロ セス圧力は30 Pa, 放電電力800 W, CF₄とCHF₃の流 量比は1:1である。ウェーハ外周2 mm以内の範囲 でエッチングレートの均一性は±2.4 %であり, 目標 とする±5 %以下を達成した。この結果は, エッチ ングの均一性を向上させるためにシリコンエッジリン グおよび上部電極の形状を最適化することによって達 成されている。 次に連続ランニングした際のエッチング特性の再現 性およびパーティクルを確認した。この際に使用した CF4とCHF3のガス流量比は1:1.2とした。量産ライ ンでの連続運転を前提としていることから1ロット毎 の連続処理を実施し、プラズマによるin-situクリーニ ングやチャンバーを開放したメンテナンスなどは実施 していない。ダミーウェーハおよびパーティクル測定 にはシリコンウェーハを用い、パーティクルは0.2 μm 以上を測定した。エッチング特性を確認する際は熱酸 化膜付きウェーハを用いた。連続ランニング中のエッ チング特性の確認は、ロット内の再現確認とロット間 の再現確認を実施した。1ロット単位で処理をしてい ることから、連続放電8時間までは約2時間毎に、連 続放電8時間以降は約8時間毎にエッチング特性を確 認した。

連続ランニング時のエッチング特性確認ロットの1 枚目の推移をFig.3に示す。エッチングレートは、420 nm/min.前後で安定しており、その再現性は±0.5 % であった。各測定ウェーハのエッチングレートの面内

均一性は、±3%以下であった。評価開始時(0時間)と74時間連続ランニング処理した後の1ロット内のエッチングレートと面内均一性の推移をFig4に示す。1ロット内のエッチングレートの再現性は共に± 1.7%であり、各ウェーハの面内均一性は±2.8%以下であった。1ロット内のエッチングレートの推移は進 続処理時間に関わらず若干の上昇傾向を示し、均一性の推移は若干の改善傾向を示した。74時間処理後の均 一性が評価開始時と比較して悪化しているのは、シリ コンパーツの消耗によるものと考えられる。

パーティクル測定結果をFig.5に示す。パーティク ルは10個以下で推移し,目標とする80時間以上を達成 した。連続ランニング後にチャンバーを大気開放し内 部パーツの状態を確認した。シリコン材料を用いた上 部電極およびエッジリングの表面は,バイアスが印加 されることで反応生成物などが付着せず,金属光沢を 維持していた。下部電極周辺はフルオロカーボン系の 赤茶色の堆積物が付着していたが,目視では付着物の 剥離を確認できなかった。

4.2 8インチウェーハ対応モジュール

代表的な8インチ熱酸化膜ウェーハのエッチング特 性をFig.6に示す。処理条件は、プロセス圧力70 Pa、

プロセスガスとしてAr, CF4, CHF3を使用した。上 部電極は前述のように2系統ガス供給システムを採用 しており, エッチングレートの面内均一性の良い比率 を採用している。エッチングレートの面内均一性はウ ェーハ外周4 mm以内の範囲で, 放電電力に依存せず ±2%前後であり目標の±5%以内を達成した。

パターン付き熱酸化膜ウェーハを30 %相当オーバ ーエッチングし, 0.5 µmホール形状のSEM像を観察 した結果をFig.7に示す。各SEM像より計算されたテ ーパー角の分布は1°以内であった。

5. 接続可能な搬送系

今回開発したエッチングモジュールは、エッチング、 スパッタリング、アッシング、CVDなど複数の異なる プロセス室の組合せが可能な「Model:uGmni-200」の 搬送コア(Fig.8)に搭載される。「Model:uGmni-200」 の搬送コアは、最大二つのモジュールが搭載可能な四 角形搬送コアと最大四つのモジュールが搭載可能な六 角形搬送コアがあり、少量生産から大量生産に対応可 能である。

6.)まとめ

電子デバイス生産ライン向けに6インチウェーハお よび8インチウェーハを処理可能な誘電体のエッチン グに特化した容量結合型エッチングモジュールについ て報告した。このエッチングモジュールは、エッチン グの均一性や再現性に優れるとともに金属汚染やパー ティクルに配慮した構造となっている。様々な搬送コ アへの接続が可能であることから実験ラインから量産 ラインまでの適用が見込まれる。現在,400 kHzの高 周波を利用したナローギャップ容量結合型エッチング モジュールの構造となっているが、周波数の異なる高 周波電源を搭載することが可能で、幅広いプロセスへ の適合性を秘めている。

我々の技術がエレクトロニクス産業を支えることで, より豊かで安心・安全な未来の実現されることを願っ ている。

文 献

- S. Shinohara : JSPA Catalog No. AP992339, JSAP, Tokyo (1999), p. 1.
- M. Sekine : J. Plasma Fusion Res. Vol.83, No.4 319, (2007)
- 3) 辰巳哲也:応用物理 85,761 (2016)
- 4) 森川泰宏:(2003).気相・表面反応制御に基づく ドライエッチング技術に関する研究,東京大学大 学院工学研究科博士論文.
- 5)米田昌弘:(1998).プラズマエッチング技術の半 導体デバイスへの応用に関する研究,京都大学大 学院工学研究科博士論文.
- T. Tatsumi, H. Hayashi, S. Morishita, S. Noda, M. Okigawa, N. Itabashi, Y. Hikosaka, and M. Inoue : Jpn. J. Appl. Phys. 37, 2394 (1998).

24