電気二重層キャパシタ(EDLC)は高出力と長寿命に優れた蓄電デバイスであるが,エネルギー密度が低いという課題がある。近年では温室効果ガスの排出量削減に関して世界的に政策が進められており,ハイブリット自動車(HEV)や電気自動車(EV)などに搭載するためのキャパシタにも高エネルギー密度化が求められている
そのため, Fig.1 に示すような活性炭を正負極に用いたEDLC の負極側をリチウムイオンがドープ可能な材料に置き換えることで,エネルギー密度を向上させたリチウムイオンキャパシタ(LIC)1, 2)の開発も盛んに行われるようになってきたFig.2 に各種蓄電デバイスのラゴンプロットを示す3)。ラゴンプロットとは横軸に出力密度(瞬発力に相当),縦軸にエネルギー密度(持久力に相当)を示したものである。理想的にはラゴンプロットの右上に位置する特性を持つことが望ましく,LIC はEDLC の瞬発力とリチウムイオンバッテリー(LIB)の持久力をどちらも兼ね備えた理想の蓄電デバイスとしての可能性を秘めている。
EDLC はその高出力特性から自動車の回生エネルギーシステムや,中国国内の路面電車,路線バスなどにも既に普及している4)。大電流で一気に充電を行うことで次の停留所や駅までの決められた短距離間を走行することができる。この蓄電池の部分をLIC で置き換えることにより,大量に積載しているEDLC を小型・軽量化でき,航続距離の改善も可能となる。将来的には急速充放電が可能になり,一般道路にもワイヤレス給電の技術が普及することで,LIC 単独のEV が実現することにも期待できる。我々がLIC の評価を開始した背景として,これまでリチウム- 硫黄二次電池(LiS)と呼ばれる次世代二次電池の正極材料に,化学気相成長(Chemical Vapor Deposition: CVD)法で作製したカーボンナノチューブ(CNT)電極の開発を行ってきたことが挙げられる。
この電池の課題として,硫黄が絶縁物であるため多量の導電材が必要となることが挙げられる。アセチレンブラックなどの炭素材料より導電性に優れたCNT を用いることで導電材の割合を減らすことが可能となり,電池特性向上につながる。熱CVD 法で作製されたCNT はニッケル金属箔上から垂直に配向しており,電極上部まで良好な電子伝導パスが形成されている(Fig.3 を参照)ため,硫黄の充填量を飛躍的に向上させることが可能であることをこれまで確認してきた5)。
本稿では,この導電性に優れた垂直配向CNT 電極がLIC の負極材料としても適用できるかどうか検証した結果について紹介する。
(※この記事は、2019年9月発行のテクニカルジャーナルMo.83に掲載されたものです。)
記事の続きは下記URLよりアルバックテクニカルジャーナルにユーザ登録するとご覧いただけます。https://www.ulvac.co.jp/research_development/technical_journal/index.htmlhttps://www.ulvac.co.jp/r_d/technical_journal/tj83j/
文献1) M. Morita: Electrochemistry 85, 736(2017).2) T. Chiba: Electrochemistry 85, 796(2017).3) https://www.jmenergy.co.jp/lithium_ion_capacitor/.4) "キャパシタ技術"平成30年度第3回研究会特別号, 28(2018).5) Y. Fukuda: The 19th International Meeting on Lithium Batteries(2018)803.
本研究は,文部科学省『省エネルギー社会の実現に資する次世代半導体研究開発』事業JPJ005357ににおける名古屋大学殿の協力機関としての成果が含まれる。本事業では,次世代半導体材料として有望な窒化ガリウム(GaN)に関して,材料創製からデバイス動作検証・システム応用までの研究開発を一体的に行う研究開発拠点を構築し,理論・シミュレーションも活用した基礎基盤研究を実施することにより,実用化に向けた研究開発を加速することを目的としている。
GaNパワーデバイスの低ダメージドライエッチング技術
近年の飛躍的な科学技術の進歩に伴い,エネルギー消費量は世界的にますます膨大になっている。一方で,エネルギー発電やガソリン自動車等から排出される二酸化炭素(CO2)や温室効果ガスが環境に与える影響は甚大であり,地球温暖化防止,省エネルギー化を目指した研究開発がとても重要になっており,喫緊の課題である。
GaNは,現在半導体パワーデバイスの主流となっているシリコン(Si)に比べて,バンドギャップエネルギー及び絶縁破壊電界強度が大きく,また電子移動度が高く,優れた基礎物性を有している。そのため,GaNは低損失かつ高耐圧パワーデバイスとして,特に環境負荷軽減となるハイブリッド電気自動車(HV)や電気自動車(EV)への応用が期待されている。
GaNを用いたパワーデバイスには,様々な素子構造の研究開発が進められている1 )。その中でも,デバイス構造の特徴から縦型トレンチゲートMetal-oxidesemiconductor field-effect transistors( MOSFETs)は,チップの小型化と高速スイッチングを可能にするデバイスとして注目されている。トレンチゲートという名称の通り,GaNウェーハ表面に,幅・深さが1 μm程度の溝(トレンチ)を形成することで,デバイスのオンオフのスイッチング動作を行うゲートとして機能させる。
トレンチは,エッチング工程により形成される。その側壁はデバイス動作時に反転層として電子が流れる経路となる。そのため,垂直性及び側壁表面の平坦性が良好なトレンチを形成するエッチング技術は,特にチャネル移動度というデバイス評価指標を向上させるための必須の技術となる。また,トレンチ形成の際に導入されるGaNへのダメージの低減も重要な課題である。
本報告では,GaNトレンチ形状制御と低ダメージ化に向けた最近のアルバックの取り組みと得られた成果を紹介する。
(※この記事は、2021年4月発行のテクニカルジャーナルMo.84に掲載されたものです。)
記事の続きは下記URLよりアルバックテクニカルジャーナルに
ユーザ登録するとご覧いただけます。
https://www.ulvac.co.jp/r_d/technical_journal/tj84j/
文 献
1) T. Kachi: Jpn. J. Appl. Phys. 53, 100210( 2014).
光学多層膜はガラスや樹脂,金属などの基材に数種類の屈折率の異なる材料を交互に形成することで特定波長の光を透過・反射する機能をもたせた薄膜である(Fig.1)。かねてよりレンズの反射防止膜や増反射ミラーなどで使用され,光学フィルタやハーフミラーなど応用例は多岐にわたる。
光学薄膜の原理
また,近年では3D顔認証用のセンサー,距離計測用のLiDAR(Light Detection and Ranging),生体認証などのデバイスにも光学薄膜が活用されている。これらのデバイスではFig.2に示すように,光源から特定の波長の光を対象物に照射し,対象物から反射してきた特定波長の光のみを検出するため,BPF(Band Pass Filter)が用いられている。特に,顔認証用途の近赤外BPFは,広い視野角にわたって信号損失を少なくするため,対象物からの反射光が大きな角度で入射した場合でもBPF透過帯の中心波長のオフセット量が小さく,高透過率のものが求められる。
BPF(バンドパスフィルター)の原理
そのため,これまで主に使用されてきた高屈折率成膜材料のTa 2 O 5 ,Nb 2 O 5,TiO 2に比べて,近赤外波長領域での屈折率が高く可視光波長領域を吸収する特性をもつ水素化アモルファスシリコン(a-Si:H)を使用したBPFが注目されている1 )。a-Si:Hを使用することでBPFの膜層数,膜厚の低減が可能となり生産性の向上が期待される。
また,Fig.3に示すようにスマートフォンのカメラモジュールなどは,従来レンズや光学フィルタなどの光学部品とCMOSなどの半導体部品を別々に製造後,モジュールとして組み立てを行っていたが,今後ウェーハレベルで各部品を作製,貼り付けを行った後にカットするWLO(Wafer Level Optics)と呼ばれる製造方法が主流になると言われている。そのため,φ200 mm,φ300 mm ウェーハへの対応,品質面においても従来より低パーティクル装置・ハンドリング管理の対応が求められる。光学膜の成膜方法としては蒸着が用いられてきたが,光学膜の用途が広がるにつれ膜厚制御性や面内分布の要求がより高度になり,スパッタ法による光学膜の成膜に注目が集まっている。
光学デバイスの製造プロセス
記事の続きは下記URLよりアルバックテクニカルジャーナルに
ユーザ登録するとご覧いただけます。
https://www.ulvac.co.jp/r_d/technical_journal/tj84j/
システムインパッケージ(SiP)とは複数の半導体チップを1つのパッケージ内に封止する技術ことです。半導体Chipをそれぞれ作製し、実装プロセスで組み合わせます。
対してシステムオンパッケージ(SoC)は1つの半導体チップ上に異なる機能を集積する技術です。例えば、CPUと大容量メモリ、高耐圧電源ICと低電圧CPU、などをワンチップ化する技術のことをいいます。
SiPは、チップ間の配線を設けるため、SoCと比較して応答速度などで性能が低いこと。SoCは、高い歩留まりをKeepするのが困難であることと、製造工期が長いなどそれぞれ違いがあります。
再配線層、Build up配線以外にも、SiP向けにプラズマ技術は応用されています。 この動画ではULVACが提供する表面改質処理といったアプリケーションを紹介します。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら
Printed Circuit Board (PCB)とは絶縁体の内部、または、表面に金属配線が施された電子部品が取り付けらる基板のことです。半導体パッケージ(実装)製品の王道製品と言えます。 アルバックは、PCB製品の微細化技術に一役買っています。 将来をターゲットに据えたドライ化技術について紹介します。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら
最先端のパッケージ(実装)製品には、プラズマ技術が既に使われています。アルバックではウェハー、パネル向けのプラズマアッシング装置を提供しています。これらのアッシング装置はバッチ式ではなくアッシングレートの面内分布を意識した枚葉式の装置です。
一般的にアッシングとは、フォトレジストをプラズマで分解し除去する工程です。アルバックでは実装の工程のアッシングは比較的簡単なエッチングをするという意味合いで使われています。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら
半導体パッケージ(実装)製品のトレンドと言えば、ファンアウト(Fan-out)。アルバックはファンアウトパッケージの量産化技術に貢献しています。 ここでは、プロセスフローとプラズマ技術についてご紹介します。
Key word
Fan-Out(FO) : チップに対して扇状に配線を広げた構造。
Package on Package (PoP) : パッケージを積層した構造。
Redistributed layer (RDL)、再配線層 : チップと外部取り出し部までの配線層
Descum : フォトリソグラフィー後の残渣を除去する工程
感光性樹脂 : 光を照射することで性質が変化する高分子材料の総称。
Polyimide : Imide結合を含む高分子化合物の総称。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら
プラズマ発生方法は、沢山種類があります。その中で、アルバックはパッケージ(実装)製品に適したプラズマ源を採用しています。主に下記の放電方式があります。
Surface Wave Plasma (SWP) : マイクロ波の表面波によって誘電体透過窓表面に表面波を生成。この表面波によって、透過窓付近にプラズマを発生する方法。
Capacitively Coupled Plasma (CCP) : 2枚の金属電極に片方に高周波電源が接続されており、 極板間の電場形成によってプラズマを発生する方法。
Dual frequency Capacitively Couple Plasma (2-Freq CCP) :2枚の電極基板それぞれに異なる高周波電源が接続されているCCP方式。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら
半導体チップの微細化が難しくなっている中、デバイスの性能を高めるためにパッケージ技術が注目を集めています。異種デバイスを集積し、高性能化する技術を「More than Moore」といい複数の半導体パッケージを一つの半導体パッケージに封止する技術をシステムインパッケージといいます。
アルバックは半導体パッケージ(実装)の量産化技術の開発に力を入れています。ここでは、パッケージ(実装)向けプラズマ技術の背景をご紹介します。
アッシング装置紹介はこちら
実装工程プロセスの紹介はこちら
お問い合わせはこちら