バックナンバー|研究・開発|アルバック
テクニカルジャーナル

バックナンバー

technical-journal_no84

No.84
April/2021

  • 半導体多層配線における成膜技術
    ダウンロード
    先進技術研究所 髙澤悟他

    We have developed pretreatment technology, Cu sputter deposition technology, and CVD-Co deposition technology for semiconductor multilayer wiring technology. The New remote plasma Process of the pretreatment technology suppressed the damage to the Low-k film, and the uniformity in the wafer surface and the stability of the continuous treatment were obtained. The New CVD-Co Process realized a uniform film formation with a film thickness of 1.5 nm and obtained good coverage performance in a fine pattern. In the future, these wiring formation technologies are expected to be applied to Logic and Memory Devices.

  • 相変化メモリ向け成膜技術とプロセスの開発
    ダウンロード
    先進技術研究所 増田健他

    Phase change random access memory( PCRAM) is a type of non-volatile memory that is embedded in semiconductor devices and has been put to practical use as storage class memory (SCM) with high speed and large capacity at a lower cost than DRAM. It is also expected to be applied to neural computing, which mimics the neural circuits of the human brain. In order to realize PCRAM, it is essential to develop film deposition technologies and processes to realize appropriate film properties and mass productivity for the memory elements, selector elements, and electrode materials( carbon is widely used). In this paper, we will explain the status of technology development for depositing each of these elements, and also present the evaluation results of a prototype AI device using CVD technology for application in neural computing.

  • 光学膜成膜装置ULDiS-1500PHLの開発
    ダウンロード
    先進技術研究所 荒谷卓磨他

    Optical films can select transmittance and reflectance at certain wavelength by combination of thin films with different refractive index. And it have long been used as anti-reflection (AR) film, specific wavelength transmission filter, and so on. In past, optical films are deposited on certain substrate and assembled with electronic devices. However, recently case of assembling with optical films on wafer and electronic devices before dicing is increasing along the miniaturization of electronic devices. So deposition system for optical film is required to meet wafer process and particle control with semiconductor level. We developed sputtering system "ULDiS-1500PHL" for wafer, and report system and process especially for infrared band pass filter.

  • 次世代デバイス向け高移動度酸化物半導体材料の開発
    ダウンロード
    先進技術研究所 半那拓他

    Transparent Amorphous Oxide Semiconductor( TAOS) typified by amorphous IGZO( In-Ga-Zn-O) is promising materials for next-generation electronics devices. It can provide homogeneous and large area thin film inexpensively by sputtering equipment for mass production. The special properties of TAOS based devices such as amorphous structure, high mobility and low leak current may have potential to replace conventional Si based technology. Development of new TAOS material which has high mobility and high reliability is essential for the popularization of oxide based technology. In this paper we developed "Target H" as a high mobility oxide semiconductor sputtering target. The thin film deposited by DC (Direct Current) magnetron sputtering shows high Hall mobility above 25 cm2/Vs and amorphous structure regardless of partial pressure of oxygen during film deposition. The BCE-type TFT (Thin Film Transistor) by using Target H and IGZO were demonstrated. The estimated mobility of H was 34.8 cm2/Vs, which is 3 times larger than that of IGZO.

  • GaNパワーデバイス向け低ダメージドライエッチング技術
    ダウンロード
    先進技術研究所 山田真嗣・中村敏幸他

    In this report, low-damage dry etching technologies for Gallium nitride( GaN) power devices are presented using inductively coupled plasma reactive ion etching( ICP-RIE) equipment with the newlydeveloped high-frequency RF power supply. GaN vertical trench-gate metal-oxide-semiconductor field-effect transistors( MOSFETs) are promising devices for realizing high-breakdown voltage and low on-resistance. However, generally, when the trench-gate structure is fabricated by ICP-RIE, these properties degrade due to the plasma-induced damage which is formed near GaN surface. Our RF power supply contributes to the reduction of the damage by outputting accurately-controlled and ultimately-low bias power. This report introduces the overview of the RF power supply and the recent achievements using it.

technical-journal_no83 Car Electronics

No.83
September/2019

  • 車載MEMSセンサ用機能性材料膜の形成
    ダウンロード
    半導体・電子技術研究所 神保武人 他

    In this chapter, the MEMS sensor for automotive application and related functional material films, whose deposition technologies we develop, will be described. Performance of automobile was improved by the control system, enabling lower fuel consumption, higher safety and so on. MEMS sensor is essential for controlling systems as it can detect environmental changes and feedback the information to the system. Importance of automotive MEMS sensor is getting higher for the realization of a next-generation automobile such as an autonomous car, electric vehicle and so on. Realization of the MEMS sensor with a new function is expected by applying a variety of functional materials. More specifically, functional material films, PZT and VOx films which are developed by authors are introduced. Both films are deposited by the sputtering method and films with excellent performances can be obtained by unique sputtering and process technologies.

  • 車載3Dセンサ向けドライエッチング技術
    ダウンロード
    電子機器事業部 古田寛治 他

    Development of 3D sensing devices for autonomous driving has seen significant technical advances in recent years. Among them, Light Detection And Ranging(LiDAR)proves to be the most compatible for such sensors as it possesses characteristics that can further enhance the functionality of autonomous driving. Vertical Cavity Surface Emitting Laser(VCSEL)is economical and compact enough to be the light source of LiDAR. And dry process is the key to fabrication of VSCEL. However such fabrication method poses various challenges. To fabricate these devices, we have been developing high-uniformity etching technology, along with Interferometry End Point monitoring system. This paper will elaborate on the solutions took to address these challenges.

  • 真空蒸着プロセスを用いたLi金属負極の開発
    ダウンロード
    超材料研究所 横山礼寛 他

    The market of Li-ion batteries is expected to grow rapidly. Therefore, an advanced rechargeable battery is actively developed. Among them, a rechargeable battery using lithium metal as the anode is an ideal battery in term of energy density, and that is attracting attention as capable of high capacity and light weight. However, in order to put lithium metal anode into practical use, it is necessary to solve the dendrite that occur when charge / discharge reaction is repeated. It has issues in terms of safety and battery life. Compared to conventional roll press Li foil, our vacuum evaporated Li film has shown excellent cycle performance. Furthermore, it was also possible to stabilize the active Li surface after deposition by using "chemical-passivation" process which we developed.

  • 垂直配向カーボンナノチューブ電極のキャパシタへの応用
    ダウンロード
    超材料研究所 福田義朗 他

    Carbon nanotube(CNT)electrodes vertically aligned on a copper foil substrate has been fabricated by using a thermal chemical vapor deposition(CVD)method. In the electrode, superior electron conduction pathes are formed over the whole of electrode. The electron conduction pathes are due to the fact that the CNTs are vertically aligned on the substrate with strong adhesion. The vertically aligned CNT electrode has been applied to a lithium ion capacitor(LIC)as a negative electrode material. The fabricated LIC shows high energy density compared to an electric double-layer capacitor(EDLC)to which a commercial activated carbon electrode material has been applied. Furthermore, the fabricated LIC shows high power density compared to a LIC to which a commercial graphite anode has been applied.

  • 自動車に使われるパワーデバイス
    ダウンロード
    半導体電子技術研究所 高良昭彦 他

    Situation surrounding the car industry has changed dramatically. The target of technological development has been shifted to electric vehicle(EV)or full cell vehicle(FCV). Battery, motor and power device represent the most essential technologies for EV and FCV. Power device is a semiconductor element which works as a switch to convert the electric power, e.g., metal oxide semiconductor field effect transistor(MOSFET)and insulated gate bipolar transistor(IGBT). Most of the current power device technology is based upon silicon(Si)wafer. Silicon carbide(SiC)and gallium nitride(GaN)attract attention as the next generation due to their high voltage resistant property with low electric resistance, which is suitable for power device. ULVAC works on productivity enhancement of thin Si wafer process equipment, ion implantation equipment for SiC, and process development of activating annealing to form p-type region in GaN power device based upon Magnesium (Mg)ion implantation.

  • 車載モータ用磁石向け工業炉
    ダウンロード
    産業機器事業部 茂木祥吾

    Magnets are produced through many processes, such as the alloy production process, hydrogen embrittlement process, sintering process and grain boundary diffusion process. To produce the high performance magnets for the vehicles' motors, ULVAC provides the suitable furnaces for each process. "Magcaster-600" is a melting furnace for the alloy production process to produce magnets with good grinding characteristics. "FHH series" are hydrogen furnaces for the hydrogen embrittlement process without exposure to the air. "FSC series" are inline type heat treatment furnaces for the sintering and aging processes. "Magrise series" are heat treatment furnaces for the grain boundary diffusion process to defuse heavy rare metals into the neodymium. This article introduces the features of the furnaces manufactured by ULVAC to produce the magnets for the vehicles' motors.

No.82
September/2018

  • ウェットリンス機構付きメタルエッチャーの開発
    ダウンロード
    電子機器事業部 小室 健司 他

    With our dry etching equipment, high density plasma (5E10~1E11 / cm3) can be generated at low pressure (0.07~13.3Pa) by ISM (Inductive Super Magbetron) type plasma source, uniform etching distribution by magnet It is possible.In this issue, we developed dry and wet composite mass production type dry etching equipment for high quality SAW filter.The feature of this device is solved by developing hardware that performs a series of processing under low dew pointenvironment wet etching after dry etching, against corrosion which is particularly likely to occur in composite metal film.

  • Cu 合金スパッタリングターゲットの開発
    ダウンロード
    超材料研究所 高澤 悟 他

    We have developed Cu alloy films with good adhesion to glass and resin substrates. For flat panel display (FPD)applications, particularly wiring material of the next generation high definition TV, high thermal resistance is required.Compared with Cu/Ti and Cu/Mo films commonly used as thin film transistor (TFT) wiring metal, our newly developed Cualloy exhibits higher thermal resistance characteristics. In addition, for printed circuit board (PCB) applications, new Cualloy film contributes to cost reduction by simplifying etching process comparing with Cu/Ti film as general wiring material.

  • エネルギーハーベスト実現に向けたスピンゼーベック効果による面内発電熱電子素子の開発
    ダウンロード
    未来技術研究所 野末 竜弘 他

    We have investigated the thermoelectric elements using the spin Seebeck effect (SSE), in order to develop the novel thermoelectric device. The multilayered SSE elements of Y3Fe5O12 (YIG) and Pt, [YIG/Pt]n, were fabricated by sputtering.The sample of n=2 had the SSE coefficient 2 times as large as that of n=1. However, the SSE of n=3 sample was almost equal to that of n=2. This enhancement of SSE is considered to be contributed by the spin current enhanced in the multilayer [YIG/Pt]n.

  • 次世代超伝導加速空洞に向けた窒化ニオブ薄膜の開発
    ダウンロード
    未来技術研究所 伊藤 亮平 他

    S-I-S (superconductor-insulator-superconductor) multilayered structure theory has been proposed to achieve the maximum acceleration gradient of superconducting radio frequency cavities higher than the theoretical limit of conventional Nb cavities. In order to demonstrate this theory, we investigated the optimal deposition condition for reactive sputtering of NbN-SiO2 thin films and the correlation between the deposition conditions and the thin film properties. We finally made multilayered sample consisting of NbN-SiO2 thin films and bulk Nb substrate, which has good crystalline orientation.Moreover, we clarified that the lower critical field of the multilayered sample was higher than a bulk Nb. In other words, we succeeded in demonstrating the S-I-S theory for the first time in the measurement using the small sample.

  • 高速排気と低消費電力を両立したドライ真空ポンプ「LS シリーズ」
    ダウンロード
    技術開発部 田中 智成 他

    Dry vacuum pumps are used in many production lines, including those for electronic parts and displays. Environmental considerations have led to dry vacuum pumps becoming mainstream thanks to their low power consumption. However,typical dry vacuum pumps with low power consumption tend to have the problem of long pumping down time, as they have a low pumping speed near atmospheric pressure. To solve this problem, ULVAC has developed a new dry vacuum pump series called LS series that combines high pumping speed with low power consumption. By increasing the pumping speed near atmospheric pressure, ULVAC has realized a dry vacuum pump with high pumping speed that uses the original technology developed by the company to reduce power consumption.

No.81
August/2017

  • G10.5 Sputtering 装置「SMD3400」の開発
    ダウンロード
    超材料研究所 水野 雄介 他

    "SMD 3400" is the large-scaled sputtering system, manufactured and developed for use in Generation 10.5 (G10.5), which mother glass size is approximately 3400×3000 mm, for TFT-LCD production line. "SMD 3400" is composed of Loading/Unloading position, Loading/Unloading chamber, heating chamber and 2 sputtering chambers. Planer targets of Cu and ITO are mounted respectively on the sputtering chamber in multi-cathode systems. This sputtering system has improved horizontal wave-formed thickness uniformity problem depends on the cathode arrangement by using new-type deposition method, although conventionally film thickness become thicker right in front of the target and thinner at between the targets. This new-type deposition method has successfully introduced to "SMD2400"so far, which established massproduction technology to improve luminance unevenness in display due to horizontal wave-formed thickness uniformity. We investigated film thickness uniformity, Rs uniformity, reflectance (for Cu), transmittance (for ITO) and film stress in the Cu and ITO process using "SMD3400". We obtaind film thickness uniformity less than 10% in both process as we expected by the simulation. We confirmed new-type deposition method improve Rs horizontal distribution. And good Rs uniformity, reflectance, transmittance and film stress were obtained at G10.5 substrate area.

  • スパッタプロセスを用いた高抵抗透明電極の開発
    ダウンロード
    超材料研究所 高橋 明久 他

    For the In-Cell type touch screen panel, a high resistivity transparent electrode that can work as anti-static without affecting touch sensing is required. ULVAC selected Sputtering Process which is high in productivity and suitable for large size and successfully developed a high resistivity transparent conductive oxide electrode satisfying required specification.

  • ナノメタルインクを用いた配線形成技術とグラビアオフセット印刷による透明電極の形成
    ダウンロード
    未来技術研究所 橋本 夏樹 他

    We introduce silver nanoparticle ink, namely nanometal ink, which is essential for printed electronics. In recent, flexibility is required in the field of transparent electrodes for future flexible devices. Although indium tin oxide (ITO) is the most widespread material as transparent electrode, its lack of adequate flexibility and poor conductivity restrain from further development for future devices. We have attempted to make patterns of invisible and high conductive fine silver electrodes by a gravure offset printing method to meet both of transparency and flexibility. Here, silver nanoparticle ink was developed and applied to fabricate fine invisible silver electrodes with the line width of 5 μm. The fabricated electrode pattern of which the line/space is 5 μm / 300 μm has excellent electric conductivity and transparency. The patterned electrode has sheet resistance of sub-10 Ω/ □ , while its transparency is higher than 90.

  • 量子ドット蛍光体の結晶成長と光電変換デバイスへの応用
    ダウンロード
    未来技術研究所 長久保 準基 他

    In order to obtain semiconductor quantum dots with superior opto-electronic performance, several technologies are required including epitaxial growth, fine particle size control, and ligand control. We have synthesized quantum dot phosphors via these technologies. The quantum dot phosphors showed better color purity (full width at half maximum: 45.0 nm, chromaticity coordinates: 0.177, 0.688) than conventional phosphors such as β -SiAlON. A photoelectric converter using these quantum dots has been fabricated, which shows 16.7% of external quantum efficiency at 850 nm of infrared light. The result indicates a possibility of developing superior infrared image sensor than conventional organic CMOS image sensors.

  • 水晶発振式成膜コントローラ・有機材料向け4 MHz 水晶板の開発
    ダウンロード
    規格品事業部 伊藤 敦

    A quartz crystal microbalance (QCM) is typically used to monitor the vapor deposition of organic materials, and QCM sensors feature a quartz crystal resonator with a resonance frequency of 5 or 6 MHz. When a metal or oxide film forms on a sensor, the rate at which the material adheres varies little. When an organic film forms on a sensor, however, the rate at which the material adheres varies considerably. This causes a problem since it greatly reduces the life of the quartz crystal resonator. The current work used several quartz crystal resonators with different fundamental frequencies to measure electrical and temperature characteristics during formation of an organic film. Results indicated that a quartz cr ystal resonator with a resonance frequency of 4 MHz or lower was better suited to sensing vapor deposition of an organic material than a resonator with a resonance frequency of 5 or 6 MHz.

  • 革新的な進化を遂げたTOF-SIMS スペクトル解析「パラレルイメージングMS/MS」
    ダウンロード
    アルバック・ファイ株式会社 分析室
    飯田 真一 他

    Recently, the applications of TOF-SIMS have expanded into a wide variety of organic materials, because the sensitivity of high mass molecular ions was improved dramatically. However, it was very difficult to determine the chemical formula from the measured mass above m/z 200. The ambiguous peak identification was a significant problem in TOF-SIMS. In order to determine the chemical formula as well as detailed chemical structure, we developed the TOF-SIMS instrument equipped with Tandem MS (MS/MS), and applied it to analysis of various organic materials. In this article, we will introduce this unique instrument, and demonstrate the results of the spectra analysis using MS/MS.

No.80
February/2017

  • パネルレベル高密度実装ソリューション
    ダウンロード
    半導体電子技術研究所 森川 泰宏 他

    High-density packaging technologies such as 3D, 2.5/2.1D scheme basing on PCB (Print Circuit Board) substrate are among key technologies to satisfy the requirements from the both smart semiconductor devices and smart functional devices. ULVAC has been continuously developing manufacturing solutions for high-density packaging. In this paper, buildup multilayer technology solutions consisting of etching, ashing and PVD (Physical Vapor Deposition) sputtering to make the high density interconnection PCB panel substrate, will be introduced.

  • アルバックにおけるMRAM向け量産技術開発
    ダウンロード
    半導体電子技術研究所 山本 弘輝 他

    We have been developing sputtering tool for MRAM mass production, with simple module configuration and smaller footprint. It provides stable magnetic Co films and low damage MgO film with RA uniformity of 3.5%. Novel wide temperature process from -170℃ to 600℃ to fabricate excellent MTJ layers, will also be introduced.

  • ニオブ超伝導加速空洞の開発
    ダウンロード
    未来技術研究所 永田 智啓 他

    We study about Niobium refining and elliptical cavity fabrication process for superconducting cavity. In order to carry out Niobium purification, 600 kW electron beam melting furnace was introduced in our factory. It makes possible the stable refining to obtain a cavity quality grade by optimization of melting condition. We performed the trial manufacturing of two single cell cavities are made from our high purity Niobium ingots (RRR>300). Maximum accelerating voltage of weldingtype and seamless - type cavities were achieved 41 MV/m and 37 MV/m at 2K, respectively. These values surpass the specification of international linear collider project. Also, seamless tube for three cell cavity was prepared as scale up study. Because an average grain size in the tube for three cell is smaller than that for single cell, it is expected that smoother surface is obtained after hydrofroming process.

  • 高安定性と長寿命を実現した熱陰極電離真空計「G-TRANシリーズ ST2」
    ダウンロード
    規格品事業部 中島 豊昭 他

    Because of changes in the operating environment and the material processing with the vacuum equipment, lowering and fluctuation of the reading value of the ionization vacuum gauge has increased. Therefore, we focused on the triode ionization vacuum gauge that has a feature of high stability and high accuracy, we developed the world's first small metal type gauge head of triode ionization vacuum gauge. In environments such as oil is deposited, it was confirmed that a long period of time the reading value is more stable than the cold cathode ionization vacuum gauge and B-A ionization vacuum gauge.This triode ionization vacuum gauge that we have developed is an old technology, but we believe can contribute to solution in the new market.

  • 液体窒素ジェネレーター「EMPシリーズ」の紹介と新製品「UMP-40W」について
    ダウンロード
    アルバック・クライオ株式会社
    低温機器技術部 早坂 千明 他

    ULVAC CRYOGENICS INCORPORATED (UCI) has been a leading provider of cryopumps, and on May 2014, it has been transferred the technology of cryocooler applied equipments from IWATANI INDUSTRIAL GASES CORPORATION (IIG). Now UCI has successfully fused its existing cryocooler and liquid nitrogen generator from IIG into new liquid nitrogen generator," UMP-40W". UCI now plans to actively promote sales of" UMP-40W" globally. We will discuss in detail the transfer of technology.

  • 新しい応用分野を切り開く硬X線光電子分光分析装置:「PHI Quantes」
    ダウンロード
    アルバック・ファイ株式会社
    技術開発部 渡邉 勝巳 他

    A newly developed "PHI Quantes" is introduced, which enables both XPS(X-ray Photoelectron Spectroscopy) and HAXPES(Hard X-ray Photoelectron Spectroscopy) by using Al Kα and Cr Kα, respectively. HAXPES has advantages comparing with ordinary XPS, such as deeper analysis depth to several 10 nm, surface contamination free analysis, nondestructive interface analysis and chemical state analysis by measuring inner shell electron. Some latest applications are also demonstrated to show the capability of " PHI Quantes".



このサイトでは、お客様の利便性や利用状況の把握などのためにCookieを使用してアクセスデータを取得・利用しています。Cookieの使用に同意する場合は、
「同意しました」をクリックしてください。「個人情報保護方針」「Cookie Policy」をご確認ください。

同意しました