1. High-density Panel Level Package Solution

Author Yasuhiro MORIKAWA, et al., Institute of Semiconductor and Electronics Technologies
Abstruct High-density packaging technologies such as 3D, 2.5/2.1D scheme basing on PCB (Print Circuit Board) substrate are among key technologies to satisfy the requirements from the both smart semiconductor devices and smart functional devices. ULVAC has been continuously developing manufacturing solutions for high-density packaging. In this paper, buildup multilayer technology solutions consisting of etching, ashing and PVD (Physical Vapor Deposition) sputtering to make the high density interconnection PCB panel substrate, will be introduced.

2. Recent Developments in MRAM Mass-Production Technology in ULVAC

Author Hiroki YAMAMOTO et al., Institute of Semiconductor and Electronics Technologies
Abstruct We have been developing sputtering tool for MRAM mass production, with simple module configuration and smaller footprint. It provides stable magnetic Co films and low damage MgO film with RA uniformity of 3.5%. Novel wide temperature process from -170℃ to 600℃ to fabricate excellent MTJ layers, will also be introduced.

3. Development of Niobium Superconducting Cavity

Author Tomohiro NAGATA, et al., Future Technology Research Laboratory
Abstruct We study about Niobium refining and elliptical cavity fabrication process for superconducting cavity. In order to carry out Niobium purification, 600 kW electron beam melting furnace was introduced in our factory. It makes possible the stable refining to obtain a cavity quality grade by optimization of melting condition. We performed the trial manufacturing of two single cell cavities are made from our high purity Niobium ingots (RRR>300). Maximum accelerating voltage of weldingtype and seamless - type cavities were achieved 41 MV/m and 37 MV/m at 2K, respectively. These values surpass the specification of international linear collider project. Also, seamless tube for three cell cavity was prepared as scale up study. Because an average grain size in the tube for three cell is smaller than that for single cell, it is expected that smoother surface is obtained after hydrofroming process.

4. Hot Cathode Ionization Gauge “G-TRAN series ST2” Obtained High Stability and Long Life

Author Toyoaki NAKAJIMA, et al., Components Division
Abstruct Because of changes in the operating environment and the material processing with the vacuum equipment, lowering and fluctuation of the reading value of the ionization vacuum gauge has increased. Therefore, we focused on the triode ionization vacuum gauge that has a feature of high stability and high accuracy, we developed the world's first small metal type gauge head of triode ionization vacuum gauge. In environments such as oil is deposited, it was confirmed that a long period of time the reading value is more stable than the cold cathode ionization vacuum gauge and B-A ionization vacuum gauge.This triode ionization vacuum gauge that we have developed is an old technology, but we believe can contribute to solution in the new market.

5. Introduction Of Liquid Nitrogen Generator“ EMP Series” and New Product“ UMP-40W”

Author Chiaki HAYASAKA, et al., Cryogenic Equipment Engineering Divison, Ulvac Cryogenics Inc.
Abstruct ULVAC CRYOGENICS INCORPORATED (UCI) has been a leading provider of cryopumps, and on May 2014, it has been transferred the technology of cryocooler applied equipments from IWATANI INDUSTRIAL GASES CORPORATION (IIG). Now UCI has successfully fused its existing cryocooler and liquid nitrogen generator from IIG into new liquid nitrogen generator,“ UMP-40W”. UCI now plans to actively promote sales of“ UMP-40W” globally. We will discuss in detail the transfer of technology.

6.New application fields developed by Hard X-ray Photoelectron Spectroscopy:“PHI Quantes”

Author Katsumi WATANABE, et al., Department of Research and Development, ULVAC-PHI, INC.
Abstruct A newly developed “PHI Quantes” is introduced, which enables both XPS(X-ray Photoelectron Spectroscopy) and HAXPES(Hard X-ray Photoelectron Spectroscopy) by using Al Kα and Cr Kα, respectively. HAXPES has advantages comparing with ordinary XPS, such as deeper analysis depth to several 10 nm, surface contamination free analysis, nondestructive interface analysis and chemical state analysis by measuring inner shell electron. Some latest applications are also demonstrated to show the capability of “ PHI Quantes”.